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1. Introduction

In supersymmetric Yang-Mills theories (SYM) with extended supersymmetry, there are

many BPS monopole and dyon states. At weak coupling, their low-energy dynamics can

be understood semiclassically by studying the moduli space of classical BPS monopole

solutions. It turns out the dynamics is governed by some kind of a supersymmetric quantum

mechanics [1].

The simplest case, where only a single adjoint Higgs field has a nonvanishing vacuum

expectation value, was analyzed in refs. [2]–[10]. When a second adjoint Higgs is also

nonvanishing, there are BPS states with electric and magnetic charge vectors that are not

parallel [11]–[17]. In this case, the low-energy dynamics is governed by a supersymmetric

quantum mechanics with potential terms [18]–[23], which can be obtained by a non-trivial

“Scherk-Schwarz” dimensional reduction of two-dimensional (4,0) supersymmetric sigma

models [24]. This has been studied in both N = 2 and N = 4 theories through direct

derivation using collective coordinate approach and/or indirect argument based on super-

symmetric considerations. In particular, in [24], the low-energy dynamics was derived

in N = 2 and N = 4 SYM with hypermultiplets when the two adjoint Higgs fields are

nonvanishing.

One can further investigate the theory with hypermultiplets by considering the case

that the scalars in the hypermultiplets also acquire nonzero expectation values while main-

taining a nontrivial Coulomb branch. This is possible when the hypermultiplets are mass-

less and the representations contain zero-weight vectors. The corresponding supersym-

metric quantum mechanics was derived when the hypermultiplets are in real representa-

tions [24]. In deriving this, it was crucial that there are three complex structures on the

index bundle associated with the matter fermions in the real representation. When the
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representation is not real, however, the index bundle is equipped with only a single com-

plex structure in general and the low-energy dynamics was not considered. In this paper,

we will address this issue and obtain the supersymmetric quantum mechanics, which will

complete the derivation of the most general low-energy dynamics of BPS monopoles and

dyons in N = 2 and N = 4 SYM with hypermultiplets in arbitrary representations.

The plan of the rest of this paper is as follows. In section 2, we briefly review the

monopole dynamics in pure N = 2 SYM to fix notations. Section 3 is the main part of

the paper. We consider N = 2 SYM with hypermultiplets in arbitrary representations and

derive the low-energy dynamics of monopoles when scalars in the hypermultiplets addi-

tionally have nonzero vacuum expectation values while maintaining a nontrivial Coulomb

branch. We conclude in section 4.

2. Monopole Dynamics in Pure N = 2 Super Yang-Mills Theory

In this section, we briefly review the dynamics of monopoles in pure N = 2 SYM. Details

can be found in [23, 24]. The Lagrangian of N = 2 SYM is

L0 = −Tr

{

−1

4
FMNFMN +

1

2
DMΦIDMΦI − 1

2
[Φ1,Φ2]2

−iχ̄γMDMχ + iχ̄[Φ1, χ] − χ̄γ5[Φ
2, χ]

}

, (2.1)

where ΦI , I = 1, 2 denote the two real Higgs fields, DMΦI = ∂MΦI + [AM ,ΦI ], χ is a

Dirac spinor and all fields are in the adjoint representation of the gauge group G. The

anti-hermitian generators of the Lie algebra G are normalised so that Tr tatb = −δab. Our

metric has mostly minus signature and γ5 = iγ0γ1γ2γ3. The classical vacuum satisfy

[Φ1,Φ2] = 0 and thus ΦI lie in the Cartan subalgebra of G: ΦI = φI · H. We will only

consider vacua where the symmetry is maximally broken to U(1)r where r = rank G. For

a given vacuum electric and magnetic charge two-vectors are defined by

QI
e = −Tr

∮

n̂ · ~E ΦI = φI · q,

QI
m = −Tr

∮

n̂ · ~B ΦI = φI · g, (2.2)

where we have introduced the electric and magnetic charge vectors,

q = nm
e βm,

g = 4πnm
mβ∗

m, (2.3)

respectively. βm are the simple roots and β∗
m are the simple co-roots of G, and nm

m are

the topological winding numbers and nm
e are, in the quantum theory, the electric quantum

numbers.

There is a classical mass bound given by [25, 16]

M ≥ max |Z±|
≡ max |(Q1

e − Q2
m) ± i(Q1

m + Q2
e)|. (2.4)
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Only Z− appears as a central charge in the N = 2 supersymmetry algebra and half-BPS

states satisfy M = |Z−| [26, 23]. Thus BPS solitons can only have charges satisfying

|Z−| ≥ |Z+|. This bound is saturated when

~E = ± ~Da,

~B = ~Db, (2.5)

where we have defined the rotated Higgs fields via

a = cos αΦ1 − sin αΦ2,

b = sin αΦ1 + cos αΦ2, (2.6)

and the angle α is constrained to be

tan α =
Q1

m ∓ Q2
e

Q2
m ± Q1

e

. (2.7)

The second equation in (2.5) is the usual BPS equation for a single Higgs field of which the

solutions are usual BPS monopoles. For a given solution of the the second equation, the

first equation has a unique solution for specified asymptotic behavior of a. The solutions

to the general equations can thus be viewed as electrically dressed solutions to the BPS

monopoles.

In terms of the vectors a,b, which are defined through (2.6), the mass bound is given by

M ≥ max(±a · q + b · g), (2.8)

which can be obtained by noting that (2.7) can be recast as

b · q = ±a · g. (2.9)

In deriving the low-energy dynamics, we treat these dyons as particular excited states

of the monopole dynamics. We thus begin with a given magnetic charge vector g and fixed

Higgs expectation values ΦI . Setting q = 0 then fixes the angle α and the fields a, b defined

in (2.6). From (2.9), it also means that a is orthogonal to the magnetic charge,

a · g = 0. (2.10)

The collective coordinate expansion then begins with a static purely magnetic solution to

the equation Bi = Dib. The dynamical effect of the second Higgs field is treated as a

perturbation of this solution. The collective coordinate expansion can be considered to be

an expansion in n = n∂ + 1
2nf , where n∂ is the number of time derivatives and nf is the

number of fermions. The equations of motion of the low-energy effective action will be of

order n = 2, so we will solve the equations of motion of the field theory to order n = 0,

n = 1
2 and n = 1. To incorporate the affects of the second Higgs field we will also assume

that a is of order n = 1.

Since the collective coordinate expansion is constructed about solutions of the ordinary

BPS equation for a single Higgs field Bi = Dib, we summarize some aspects of the geometry

of the moduli spaces of solutions following [27, 2].
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We first define a connection Wµ on R4 that is translationally invariant in the four

direction via Wµ = (Ai, b) and field strength Gµν = [Dµ,Dν ] with Dµ = ∂µ + [Wµ, ]. then

the BPS equations can be recast as self-duality equations for Wµ,

Gµν =
1

2
εµνρσGρσ. (2.11)

Denote the moduli space of solutions to the BPS equations within a given topological

class k by Mk. A natural set of coordinates is provided by the moduli zm that specify the

most general gauge equivalence class of solutions Wµ(x, z). The zero modes δmWµ about

a given solution satisfy the linearized BPS equation

D[µδmWν] =
1

2
εµνρσDρδmWσ, (2.12)

as well as

DµδmWµ = 0. (2.13)

A natural metric on Mk is

gmn = −
∫

d3xTr (δmWµδnWµ). (2.14)

Then (2.13) implies that the zero mode is orthogonal to gauge modes.

The zero modes are in general written as

δmWµ = ∂mWµ − Dµηm, (2.15)

where the gauge parameters ηm(x, z) are chosen to satisfy (2.13). Then, on Mk, ηm define

a natural connection with covariant derivative

sm = ∂m + [ηm, ], (2.16)

and field strength

φmn = [sm, sn]. (2.17)

The pair (Wµ(x, z), ηm(x, z)) defines a natural connection on R4 ×Mk. The components

of the field strength are given by Gµν , φmn and the mixed components are given by

[sm,Dµ] = δmWµ. (2.18)

They satisfy the following identities:

smGµν = 2D[µδmWν],

Dµφmn = −2s[aδb]Wµ,

φmn = 2(DµDµ)−1[δmWν , δnWν ]. (2.19)

The Christoffel connection associated with the metric (2.14) can be written in the

form:

Γmnk = gmlΓ
l
nk = −

∫

d3xTr (δmWµskδnWµ). (2.20)
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The hyper-Kähler structure on R4 gives rise to a hyper-Kähler structure on Mk. The three

complex structures can be written

J (s)n
m = −gnp

∫

d3xJ (s)
µνTr (δmWµδpWν), (2.21)

which implies

J (s)n
m δnWµ = −J (s)

µν δmWν . (2.22)

Now we turn to the zero modes of the adjoint fermions. On the Euclidean space R4,

we introduce Hermitian gamma matrices,

Γi = γ0γi, Γ4 = γ0, (2.23)

satisfying {Γµ,Γν} = 2δµν and define Γ5 = Γ1Γ2Γ3Γ4. The fermion zero modes are time

independent solutions of the Dirac equation in the presence of a BPS monopole,

ΓµDµχ = 0. (2.24)

They are necessarily anti-chiral. The monopole breaks 1/2 of the supersymmetry and the

unbroken supersymmetry can be used to pair the bosonic and fermionic zero modes via

χm = δmWµΓµε+, (2.25)

where ε+ is a c-number chiral spinor that can be chosen to satisfy

ε†+ε+ = 1, J (3)
µν = −iε†+Γµνε+. (2.26)

Using (2.22) we deduce that the fermionic zero modes satisfy

J (3)n
m χn = iχm, (2.27)

and hence that two bosonic zero modes are paired with one fermionic zero mode [28].

For later use, we discuss more on the complex structures. The charge conjugation of

the spinor χ is defined as

χc ≡ Cχ̄T = C(γ0)T χ∗ (2.28)

where the charge-conjugation matrix C satisfies,

CC∗ = −1, CΓT
M = −ΓMC. (2.29)

Then with the c-number spinor ε′+ ≡ Cε∗+, we see that δmWµΓµε′+ are also zero modes and

can be expressed as a linear combination of original zero modes since χ (and W ) is in a

real representation of the gauge group, i.e.,

δmWµΓµε′+ = C k
m δkWµΓµε+, (2.30)

where the matrix C can be chosen to be anti-symmetric and unitary so that C2 = −1. By

taking the complex conjugate of (2.27), it follows that C anticommutes with J (3),

CJ (3) = −J (3)C. (2.31)
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This matrix C generates a second complex structure on the moduli space which we also de-

note by J (2). Defining J (1)=J (2)J (3) we obtain the hyper-Kähler structure of the monopole

moduli space which can be taken to be the same as (2.21) by an appropriate choice of com-

plex structures on R4.

With the above formalism on moduli space, it is now quite a simple matter to derive

the low-energy effective action of pure N = 2 SYM. First, we rewrite the Lagrangian in

terms of b, a rather than Φ1,Φ2,

L = −Tr

{

−1

4
FMNFMN +

1

2
DMaDMa +

1

2
DMbDMb − 1

2
[a, b]2

−iχ̄γMDMχ + iχ̄[b, χ] + χ̄γ5[a, χ]

}

, (2.32)

where χ has now been redefined as the field rotated by the angle (α − π/2)/2. Then the

following ansatz solve the equations of motion to order n = 1 [24]:

Wµ = Wµ(x, z(t)),

χ = δmWµΓµε+λ̃m(t),

A0 = żmηm − iφmnλ̃†mλ̃n,

a = ā + iφmnλ̃†mλ̃n, (2.33)

where

Dµā = −GmδmWµ, (2.34)

and Gm is a linear combination of the r tri-holomorphic Killing vector fields K on Mk

corresponding to the U(1)r gauge transformations

G = a ·K. (2.35)

Because of (2.27) the complex fermionic Grassmann odd collective coordinates λ̃m are

not independent and satisfy

− iλ̃mJ (3)n
m = λ̃n. (2.36)

Real independent λm can be defined via

λm =
√

2
(

λ̃m + (λ̃m)†
)

. (2.37)

After substituting the ansatz into the action, one finds that the low-energy effective

action becomes [24]

S =
1

2

∫

dt[ẋmẋngmn + igmnλmDtλ
n − GmGngmn − iDmGnλmλn] − b · g, (2.38)

which was first given in [23] based on supersymmetry considerations.
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3. Inclusion of Hypermultiplets

We now consider the low-energy dynamics of monopoles in N = 2 SYM with a hypermul-

tiplet in an arbitrary representation. This was first studied in [5 – 7] in the case that only a

single adjoint Higgs field has a non-trivial expectation value. It was then generalized in [24]

to the case that both of the adjoint Higgs in the vector multiplet have non-vanishing expec-

tation values. In [24], the low-energy dynamics was also derived when additional scalar vevs

in the hypermultiplet are turned on. In deriving this, it was necessary to assume that the

hypermultiplet is in a real representation to utilize complex structures of the index bundle

associated with the matter fermions. Here, we derive the low-energy effective theory for

the most general case, namely when the hypermultiplet is in an arbitrary representation

and nontrivial scalar vevs of the hypermultiplet are turned on.

The massless hypermultiplet contribution to the Lagrangian is given by

LH =
1

2
DKM †DKM + iΨ̄γKDKΨ − Ψ̄(−iΦ1 − γ5Φ2)Ψ

+M †1χ̄Ψ + Ψ̄χM1 + iM †2χ̄cγ5Ψ + iΨ̄γ5χ
cM2

+
1

2
M †(Φ2

1 + Φ2
2)M +

1

8
(M †tατsM)2, (3.1)

where M is a doublet of complex scalars (M1,M2)
T , tα are anti-hermitian generators in the

matter representation, τs are Pauli matrices, and χc is the charge conjugation of χ. Since

we will assume that Mi’s have nonzero vevs, the hypermultiplet is necessarily massless and

its representation should contain a zero-weight vector so that the U(1) gauge symmetries

of the Coulomb phase are left intact by turning on the vevs.

Before discussing the low-energy dynamics of the system, we briefly summarize some

aspects of the geometry of the index bundle defined by the fermion zero modes. The zero

modes of matter fermion Ψ satisfy the the Dirac equation in the background of a monopole

configuration

ΓµDµγ5Ψ = 0, (3.2)

and are chiral. Let ΨA(x, z), A = 1 . . . l be a basis of the fermion zero modes in monopole

background specified by the moduli z satisfying
∫

d3xΨ†

Ā
ΨB ≡ 〈ΨĀ|ΨB〉 = δĀB , (3.3)

where Ψ†

Ā
≡ (ΨA)†. Note that the following completeness relation holds:

|ΨA〉δAB̄〈ΨB̄| + Π +
1 − Γ5

2
= 1, (3.4)

where the operator Π projects onto the chiral non-zero modes and has the form

Π = γ5 /D
1

DµDµ
/Dγ5

1 + Γ5

2
. (3.5)

The fermion zero modes define an index bundle with a connection

AmĀB = 〈ΨĀ|smΨB〉, (3.6)
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and the corresponding field strength is written in the form

FmnĀB = 〈smΨĀ|ΠsnΨB〉 − 〈snΨĀ|ΠsmΨB〉 + 〈ΨĀ|φmnΨB〉. (3.7)

Since the connection one-form is unitary, the structure group of the index bundle is gener-

ically U(l). The index bundle thus admits a covariantly constant complex structure I with

Kähler form

IAB̄ = iδAB̄ . (3.8)

Now the collective coordinate expansion can be done. After a suitable chiral rotation

as in the previous section, the ansatz solving the equations of motion to order n = 1 is [24]

Wµ = Wµ(x, z(t)),

χ = δmWµΓµε+λ̃m(t),

A0 = żmηm − iφmnλ̃†mλ̃n +
i

D2
(Ψ†tαΨtα),

a = ā + iφmnλ̃†mλ̃n +
i

D2
(Ψ†tαΨtα),

Ψ = ψA(t)ΨA,

M1 = M̄1 −
2

D2
(χ̄Ψ),

M2 = M̄1 −
2i

D2
(χ̄cγ5Ψ), (3.9)

where ψA(t) is the Grassmann odd complex collective coordinates for the matter fermion

zero modes. ā satisfies (2.34) and M̄1,2 are order n = 1 and solve

D2M̄1,2 = 0. (3.10)

After substituting this ansatz into the field theory action, the M̄ -independent terms give

rise to the supersymmetric quantum mechanics derived in [24]:

L1 =
1

2

(

gmnżmżn + igmnλmDtλ
n − gmnGmGn − iDmGnλmλn

+iψaDtψ
a +

1

2
Fmnabλ

mλnψaψb − iTabψ
aψb

)

− b · g. (3.11)

where we traded off complex ψA’s in favor of real ψa’s as in (2.37) and

Dtψ
a = ψ̇a + Am

a
bż

mψb. (3.12)

T is defined by

TĀB = 〈ΨĀ|āΨB〉, (3.13)

and is anti-Hermitian in the real basis, Tab = −Tba. Furthermore, it satisfies [24]

TĀB;m = FmnĀBGn. (3.14)

In the following we derive M̄ -dependent terms which are the main result of this paper.
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3.1 Bosonic potential

First we note that, given (3.10), /DM̄iε+ and /DM̄iε
′
+ are fermion zero modes and hence can

be expanded in terms of the basis ΨA:

/DM̄iε+ = −γ5

√
2KA

i (z)ΨA,

/DM̄iε
′
+ = −γ5

√
2K ′A

i (z)ΨA. (3.15)

The quantities KA
i and K ′A

i define sections on the dual of the index bundle over the

monopole moduli space. Then KA
i and K ′A

i are orthogonal to each other,

K∗A
i K ′A

j = 0. (3.16)

To see this, write

2K∗A
i K ′A

j =

∫

d3x ( /DM̄iε+)†( /DM̄jε
′
+), (3.17)

where we used the orthogonality of the zero modes ΨA. In the right hand side of the

equation, we have the expression

ε†+ΓµΓνε
′
+ = ε†+(δµν + Γµν)ε′+. (3.18)

Since the c-number chiral spinor ε+ is orthogonal to its charge-conjugated one ε′+, which

can easily be verified by using (2.26), only the antisymmetric part survives and hence (3.17)

becomes

2K∗A
i K ′A

j =
1

2
ε†+Γµνε

′
+

∫

d3xD[µM̄ †
i Dν]M̄j. (3.19)

After an integration by parts, this can be written as a sum of a vanishing boundary integral

and the term containing the field strength Gµν = [Dµ,Dν ]. But this is self-dual and goes to

zero when multiplied by ε†+Γµνε
′
+ since ε+ is chiral. This establishes (3.16). Furthermore,

it is clear from the definition that K1 and K2 have the same magnitude as K ′
1 and K ′

2, i.e.,

K∗A
1 KA

1 = K ′∗A
1 K ′A

1 , K∗A
2 KA

2 = K ′∗A
2 K ′A

2 . (3.20)

Now we are ready to deal with the M̄ -dependent bosonic potential terms, which arise

from the kinetic terms of M in (3.1). Using the similar line of argument as above, we find

that they reduce to

LHb ≡ 1

2

∫

d3x DµM̄ †
i DµM̄i

=
1

2

∫

d3x ( /DM̄iε+)† /DM̄iε+

= K∗A
i KA

i . (3.21)

(The cross terms which are linear in M̄ vanish due to (3.10).)
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It turns out to be convenient to define

vA = KA
1 − K ′A

2 . (3.22)

Then using (3.16) and (3.20), we can rewrite (3.21) as

LHb = v∗AvA =
1

2
vava, (3.23)

where, as before, we rewrote the complex quantities vA in terms of real quantities va by

expanding

vA =
1√
2

(

v2A−1 + iv2A
)

. (3.24)

3.2 Fermion bilinear terms

Fermion bilinear terms are

LHf ≡
∫

M †1χ̄Ψ + Ψ̄χM1 + iM †2χ̄cγ5Ψ + iΨ̄γ5χ
cM2. (3.25)

With the relation δmWµ = [sm,Dµ], we find

χM̄1 = λ̃msm /DM̄1ε+ + · · · , (3.26)

where the ellipsis denote terms of the form /D(. . .) which do not contribute any new terms

in the low energy dynamics since Ψ in the Lagrangian is chiral and satisfies the Dirac

equation. Using the relation (2.30), this can also be written as

χM̄1 = −λ̃mC n
m sn /DM̄1ε

′
+ + · · · . (3.27)

The existence of two alternative expressions for the same quantity is basically related to

the hyper-Kähler structure of the moduli space, as mentioned in section 2. We will see

shortly that this plays crucial roles in constraining the form of the effective Lagrangian

so that it becomes supersymmetric. Using (3.15), we see that the term containing M̄1 in

(3.25) becomes
∫

Ψ̄χM̄1 = i
√

2λ̃mψĀ∇mK1Ā

= −i
√

2λ̃mC n
m ψĀ∇nK ′

1Ā. (3.28)

Similarly, for −iγ5χ
cM̄ ,

− iγ5χ
cM̄2 = λ̃†msm /DM2ε

′
+ + . . .

= λ̃†mC n
m sn /DM2ε+ + . . . , (3.29)

which gives
∫

iΨ̄γ5χ
cM̄2 = −i

√
2λ̃†mψĀ∇mK ′

2Ā

= −i
√

2λ̃†mψĀC n
m ∇nK2Ā. (3.30)
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Taking into account the complex conjugates of (3.28) and (3.30), we find that the

fermion bilinear terms become

LHf = i
√

2(λ̃mψĀ∇mK1Ā + λ̃†mψA∇mK1A − λ̃mψA∇mK ′
2A − λ̃†mψĀ∇mK ′

2Ā), (3.31)

where we used the expression without C n
m . In terms of the real quantities va defined in

(3.22) and λm, it can be reshuffled to

LHf = iλmψa∇mva (3.32)

−i
√

2(λ̃mψA∇mK1A − λ̃mψĀ∇mK ′
2Ā − λ̃†mψA∇mK ′

2A + λ̃†mψĀ∇mK1Ā).

Now we are going to show that each of the last four terms in the above equation is

actually zero. First, note that (3.28) gives a nontrivial relation

(1 − iJ (3))∇ψĀK1Ā = −(1 − iJ (3))C∇ψĀK ′
1Ā. (3.33)

where we used (2.36).

Note the operators (1∓ iJ (3))∇ appearing in (3.33) are holomorphic and anti-holomor-

phic covariant derivatives with respect to the third complex structure J (3) on Mk. The

reason that J (3) appears in this equation is because we used the c-number spinors ε+, ε′+
associated J (3) in considering the fermion zero modes. There are, however, three com-

plex structures on Mk and hence we can obtain similar relations if we use the c-number

spinors associated with the other complex structures J (2) = C and J (1) = J (2)J (3). The

corresponding c-number spinors ε
(s)
+ , s = 1, 2, 3 are defined by

ε
(s)†
+ ε

(s)
+ = 1, J (s)

µν = −iε
(s)†
+ Γµνε

(s)
+ , J (s)

µν Γνε
(s)
+ = iΓµε

(s)
+ , (3.34)

which generalize the relation (2.26). The corresponding zero modes are denoted as

χ(s)
m = δmWµΓµε

(s)
+ . (3.35)

After some calculation, the explicit form of ε
(s)
+ can be obtained by using (3.34):

ε
(1)
+ = −eiπ/4

√
2

(ε+ + ε′+),

ε
(2)
+ = −e−iπ/4

√
2

(ε+ − iε′+), (3.36)

where phases of the spinors are carefully chosen so that the cyclicity for the label of the

complex structures are manifest in various relations shown below. (We will continue omit

the superscript label for quantities associated with J (3).) We also define ε
′(s)
+ = Cε

(s)∗
+ .

Now let us consider the expansion

/DM̄iε
(2)
+ = −γ5

√
2K

(2)A
i (z)ΨA,

/DM̄iε
′(2)
+ = −γ5

√
2K

(2)′A
i (z)ΨA. (3.37)
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From the relation (3.36), we can express K
(2)A
i and K

(2)′A
i as

K
(1)A
i = −eiπ/4

√
2

(Ki + K ′
i)

A, K
(1)′A
i = −e−iπ/4

√
2

(K ′
i − Ki)

A,

K
(2)A
i = −e−iπ/4

√
2

(Ki − iK ′
i)

A, K
(2)′A
i = −eiπ/4

√
2

(K ′
i − iKi)

A. (3.38)

With the expansion (3.37) for s = 2, the condition corresponding to (3.33) now takes the

form

(1 − iJ (2))∇ψĀK
(2)

1Ā
= −(1 − iJ (2))J (1)∇ψĀK

(2)′

1Ā
, (3.39)

which, on using (3.33) and (3.38), can be simplified to

∇ψĀK1Ā = −iJ (1)∇ψĀK ′
1Ā. (3.40)

Similarly, for s = 1 we obtain the relation

(1 + iJ (3))∇ψĀK1Ā = −(1 + iJ (3))J (2)∇ψĀK ′
1Ā. (3.41)

Combining (3.40) and (3.41), we actually find that each side of (3.41) is zero separately.

In other words,

λ̃†m∇mψĀK1Ā = 0, λ̃m∇mψĀK ′
1Ā = 0. (3.42)

Finally, exactly the same kind of analysis with (3.29) shows that

λ̃†m∇mψAK ′
2Ā = 0, λ̃†m∇mψĀK2Ā = 0. (3.43)

(3.42) and (3.43) complete the proof that the second line of (3.32) is zero, i.e, the effective

action coming from the fermion bilinear terms become

LHf = iλmψa∇mva. (3.44)

From (3.23) and (3.44), the contribution to the effective Lagrangian from nonvanishing

hypermultiplet vevs is

L2 =
1

2
vava + iλmψa∇mva. (3.45)

3.3 Low-energy effective theory

Here we summarize the general low-energy dynamics of monopoles in N = 2 SYM with

hypermultiplets. Collecting the terms (3.11) and (3.45), we find that the Lagrangian is

given by

L =
1

2
(gmnżmżn + igmnλmDtλ

n − gmnGmGn − iDmGnλmλn

+iψaDtψ
a +

1

2
Fmnabλ

mλnψaψb − iTabψ
aψb

+vava + 2iλmψa∇mva) − b · g. (3.46)
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This Lagrangian has the same form as that obtained by a non-trivial Scherk-Schwarz

dimensional reduction on a two dimensional (4,0) supersymmetric sigma model with po-

tential [29]. It is invariant under N = 4 supersymmetry transformation given by

δzm = −iελm + iεsJ
(s)m

nλn,

δλm = (żm − Gm)ε + J (s)m
n(żn − Gn)εs − iεsλ

kλnJ (s)l
kΓ

m
ln,

δψa = −Am
a
bδz

mψb + εva + εst
a
(s), (3.47)

where ε, εs, s = 1, 2, 3 are Grassmann odd parameters, provided that the sections ta(s),

s = 1, 2, 3 can be found satisfying [24]:

J (s)n
m ∇nva = −∇mta(s),

(vat
a
(s));m = 0,

Gnva
;n = Tabv

b,

Gnta(s);n = Tabt
b
(s). (3.48)

In addition, the following constraints should be met: The first is the well-known require-

ments that the moduli space is hyper-Kähler and the curvature F is of (1,1) type with

respect to all three complex structures of the manifold. Also G must be a tri-holomorphic

Killing vector field, and the two form on the bundle T must satisfy

Tab;m = FmnabG
n. (3.49)

(3.49) is already discussed in (3.14) and, in the following, we will show that the relations

in (3.48) are indeed satisfied.

To establish the first line of (3.48), we consider the consequences of the relations (3.42)

and (3.43). Similar relations should also hold for other complex structures. In terms of

real quantities, (3.42), (3.43) and the corresponding relations for other complex structures

can be written

(1 + iJ (s))∇(1 + iI)K
(s)
i = 0,

(1 + iJ (s))∇(1 − iI)K
(s)′
i = 0, (no sum over s) (3.50)

where i = 1, 2, s = 1, 2, 3 and I is the complex structure of the index bundle introduced in

(3.8). Since all quantities in (3.50) are now real, the real and the imaginary parts should

hold separately and we have the following 12 relations,

∇K
(s)
i − J (s)∇(IK

(s)
i ) = 0,

∇K
(s)′
i + J (s)∇(IK

(s)′
i ) = 0. (no sum over s) (3.51)

These equations are, however, not all independent. Using the relation (3.38), we find after

some algebra that all the relations in (3.51) can be recast into the three equations:

J (s)∇va = −∇ta(s), (3.52)

– 13 –
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where v = K1 − K ′
2 as before and

t(1) = I(K ′
1 − K2),

t(2) = −K ′
1 − K2,

t(3) = I(K1 + K ′
2). (3.53)

This is precisely the first equation of (3.48).

With the above identification for t(s), the section va turns out to be orthogonal to ta(s),

i.e.,

vat
a
(s) = 0, (3.54)

which automatically satisfy the second line of (3.48). This can be shown by using the

similar arguments as in (3.17) and the details are omitted.

As for the last two relations in (3.48), consider the identity

Gm∇mKiĀ =
1√
2

∫

d3x Ψ†

Ā
γ0Gmsm /DM̄iε+, (3.55)

which can be easily seen from (3.15). Using the relation [sm, /D] = δmWµΓµ, /D can move

to the left and kills Ψ†

Ā
since it is a zero mode. Then

Gm∇mKiĀ =
1√
2

∫

d3x Ψ†

Ā
γ0GmδmWµΓµM̄iε+

= − 1√
2

∫

d3x Ψ†

Ā
γ0DµāΓµM̄iε+, (3.56)

where (2.34) was used in the second line. From (3.15), we see that the right hand side is

proportional to TĀB defined in (3.13), i.e.,

Gm∇mKiĀ = TĀBKB
i . (3.57)

Since the sections v and t(s) are linear combinations of Ki, this proves that the last two

identities of (3.48) hold.

In summary, the low-energy effective Lagrangian (3.46) has all the right properties to

have N = 4 supersymmetry.

4. Conclusions

In this paper, we have given a detailed derivation of the effective action governing the

low-energy dynamics of monopoles and dyons in N = 2 SYM with hypermultiplets in

arbitrary representations by generalizing the techniques developed in [24]. This includes

the case that not only adjoint Higgs fields in the N = 2 vector multiplet but also Higgs

fields in the hypermultiplets have non-vanishing expectation values while maintaining a

a non-trivial Coulomb branch, which is possible when the matter representation contains

a zero weight vector. The improvement over the earlier work is that the hypermultiplets

are not necessarily in real representations. Thus we have obtained the low-energy effective

– 14 –
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action in the most general case. It is given by a supersymmetric quantum mechanics

with potential terms which was obtained by a non-trivial “Scherk-Schwarz” dimensional

reduction of (4,0) sigma models in two dimensions, which might have a more direct stringy

origin along the line of [30].

It would be interesting to study the supersymmetric quantum mechanics derived in

this paper and check the results in the context of Seiberg-Witten theories [31]. This has

been done for example in [23] and [32] for pure SYM case. In particular, it is an interesting

problem to study the BPS spectrum using the effective action derived in this paper.
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